Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC.

نویسندگان

  • Samira C Grifoni
  • Rumbidzayi Chiposi
  • Susan E McKey
  • Michael J Ryan
  • Heather A Drummond
چکیده

Renal blood flow (RBF) autoregulation is mediated by at least two mechanisms, the fast acting myogenic response (approximately 5 s) and slow acting tubuloglomerular feedback (TGF; approximately 25 s). Previous studies suggest epithelial Na(+) channel (ENaC) family proteins, beta-ENaC in particular, mediate myogenic constriction in isolated renal interlobar arteries. However, it is unknown whether beta-ENaC-mediated myogenic constriction contributes to RBF autoregulation in vivo. Therefore, the goal of this investigation was to determine whether the myogenic mediated RBF autoregulation is inhibited in a mouse model of reduced beta-ENaC (m/m). To address this goal, we evaluated the temporal response of RBF and renal vascular resistance (RVR) to a 2-min step increase in mean arterial pressure (MAP). Pressure-induced changes in RBF and RVR at 0-5, 6-25, and 110-120 s after step increase in MAP were used to assess the contribution of myogenic and TGF mechanisms and steady-state autoregulation, respectively. The rate of the initial increase in RVR, attributed to the myogenic mechanism, was reduced by approximately 50% in m/m mice, indicating the speed of the myogenic response was inhibited. Steady-state autoregulation was similar between beta-ENaC +/+ and m/m mice. Although the rate of the secondary increase in RVR, attributed to TGF, was similar in beta-ENaC +/+ and m/m mice, however, it occurred over a longer period (+10 s), which may have allowed TGF to compensate for a loss in myogenic autoregulation. Our findings suggest beta-ENaC is an important mediator of renal myogenic constriction-mediated RBF autoregulation in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoregulation of Blood Flow: Vessel Diameter Changes in Response to Different Temperatures

Background: Autoregulation of blood flow is a marvelous phenomenon balanc- ing blood supply and tissue demand. Although many chemically-based explanations for this phenomenon have been proposed and some of them are commonly used today, biomechanical aspects of this phenomenon was neglected. The biomechanical aspect provides insights to us to model vessel diameter changes more precisely and comp...

متن کامل

Vascular ENaC proteins are required for renal myogenic constriction.

The myogenic response is an essential component of renal blood flow autoregulation and is the inherent ability of vascular smooth muscle cells (VSMCs) to contract in response to increases in intraluminal pressure. Although mechanosensitive ion channels are thought to initiate VSMC stretch-induced contraction, their molecular identity is unknown. Recent reports suggest degenerin/epithelial Na(+)...

متن کامل

Pressure-induced constriction is inhibited in a mouse model of reduced ENaC

VanLandingham LG, Gannon KP, Drummond HA. Pressureinduced constriction is inhibited in a mouse model of reduced ENaC. Am J Physiol Regul Integr Comp Physiol 297: R723–R728, 2009. First published June 24, 2009; doi:10.1152/ajpregu.00212.2009.— Recent studies suggest certain epithelial Na channel (ENaC) proteins may be components of mechanosensitive ion channel complexes in vascular smooth muscle...

متن کامل

Distal tubular feedback in the autoregulation of single nephron glomerular filtration rate.

Renal clearance and recollection micro-puncture experiments were conducted to evaluate the possible role of a distal tubular feedback mechanism in the phenomenon of renal autoregulation in dogs. Single nephron glomerular filtration rate (SNGFR) was measured from collection sites in both the proximal (proximal SNGFR) and distal tubules (distal SNGFR). Single nephron autoregulatory behavior was a...

متن کامل

Altered renal hemodynamics and impaired myogenic responses in the fawn-hooded rat.

The present study examined whether an abnormality in the myogenic response of renal arterioles that impairs autoregulation of renal blood flow (RBF) and glomerular capillary pressure (PGC) contributes to the development of renal damage in fawn-hooded hypertensive (FHH) rats. Autoregulation of whole kidney, cortical, and medullary blood flow and PGC were compared in young (12 wk old) FHH and faw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 298 2  شماره 

صفحات  -

تاریخ انتشار 2010